On the Running of Gauge Couplings in String Theory

Luca Armando Nutricati

Department of Mathematical Sciences, Durham University

Based on work in progress with Steven A. Abel and Keith R. Dienes, arXiv: 2208.nnnnn (to appear)

05/07/2022

Motivations

Facts

- * Closed string theories are UV/IR mixing theories;
- * They may have divergences.

Questions:

- * How do we treat these divergences?
- * Is it sensible to introduce a spacetime energy scale and a renormalisation procedure which respects the UV/IR mixed structure?

Outline

- * One-loop corrected gauge couplings in closed String Theory;
- * How to deal with divergences;
- * A modular invariant regulator;
- * An example of how to use it.

One-loop (threshold) correction to gauge couplings in closed String Theory

Internal part

$$\Delta_{\alpha} = \int_{\mathcal{F}} \frac{d^{2}\tau}{\tau_{2}} \left\{ \frac{i}{\pi} \frac{1}{|\eta(\tau)|^{4}} \sum_{(a,b)\neq(1,1)} \partial_{\tau} \left(\frac{\theta \begin{bmatrix} \alpha \\ \beta \end{bmatrix}}{\eta(\tau)} \right) \left(Q_{\alpha}^{2} - \frac{k_{\alpha}}{4\pi\tau_{2}} \right) C \begin{bmatrix} a \\ b \end{bmatrix} - b_{a} \right\}$$
Spacetime part

[V. Kaplunovsky, 1987]

$$b_a = \operatorname{Str}\left[Q_{\alpha}^2\left(\frac{1}{12} - S^2\right)\right]\Big|_{\text{massless}}$$

- * k_{α} Kac-Moody level at which the group factor G_{α} is realised;
- * Q_{α} Cartan charge.

Subtraction of the contribution of massless states

$$\eta(\tau) \equiv e^{\frac{\pi}{12}i\tau} \prod_{\ell=1}^{\infty} (1 - e^{2\pi\ell\tau})$$

$$\theta \begin{bmatrix} \alpha \\ \beta \end{bmatrix} (z|\tau) \equiv \sum_{n \in \mathbb{Z}} q^{\frac{1}{2}(n+\alpha/2)^2} e^{2\pi i(n+\alpha/2)(z+\beta/2)}$$

One-loop (threshold) correction to gauge couplings in closed String Theory

$$\Delta_{\alpha} = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2} \left\{ \frac{i}{\pi} \frac{1}{|\eta(\tau)|} \sum_{(a,b) \neq (1,1)} \partial_{\tau} \left(\frac{\theta \begin{bmatrix} \alpha \\ \beta \end{bmatrix}}{\eta(\tau)} \right) \left(Q_{\alpha}^2 - \frac{k_{\alpha}}{4\pi \tau_2} \right) C \begin{bmatrix} a \\ b \end{bmatrix} - b_a \right\}$$

[V. Kaplunovsky, 1987]

$$b_a = \operatorname{Str}\left[Q_{\alpha}^2\left(\frac{1}{12} - S^2\right)\right]\Big|_{\text{massless}}$$

This subtraction is needed to make the integral finite BUT

it breaks worldsheet modular invariance

Many different regulators are possible

* A simple subtraction of the divergence [Kaplunovsky, 1987]

$$\int_{\mathcal{F}} \frac{d^2\tau}{\tau_2^2} F(\tau) \longrightarrow \int_{\mathcal{F}} \frac{d^2\tau}{\tau_2^2} \left(F(\tau) - c\tau_2 \right), \qquad F(\tau) \sim c\tau_2, \quad \tau_2 \gg 1$$
 Breaks modular invariance!

It corresponds to remove massless states => definition of threshold correction.

* Introducing a cut-off in the fundamental domain

$$\widehat{I}(t) \equiv \int_{\mathcal{F}_t} \frac{d^2 \tau}{\tau_2^2} F + \int_{\mathcal{F}-\mathcal{F}_t} \frac{d^2 \tau}{\tau_2^2} \left(F - c \tau_2 \right)$$

Breaks modular invariance!

 \mathcal{F}_t

[Don Zagier, 1981; C. Angelantonj, I. Florakis, B. Pioline, 2011, ArXiv: 1110.5318.]

Many different regulators are possible

* Deform the integrand in a modular invariant way

$$\int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} F \longrightarrow \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} F(\tau) \mathcal{G}(\tau)$$

The regulator:

- * Should be modular invariant;
- * Must suppress any power-law divergence for large τ_2 ;
- * Should leave the rest of the theory intact as much as possible.

A modular invariant regulator

A possible choice

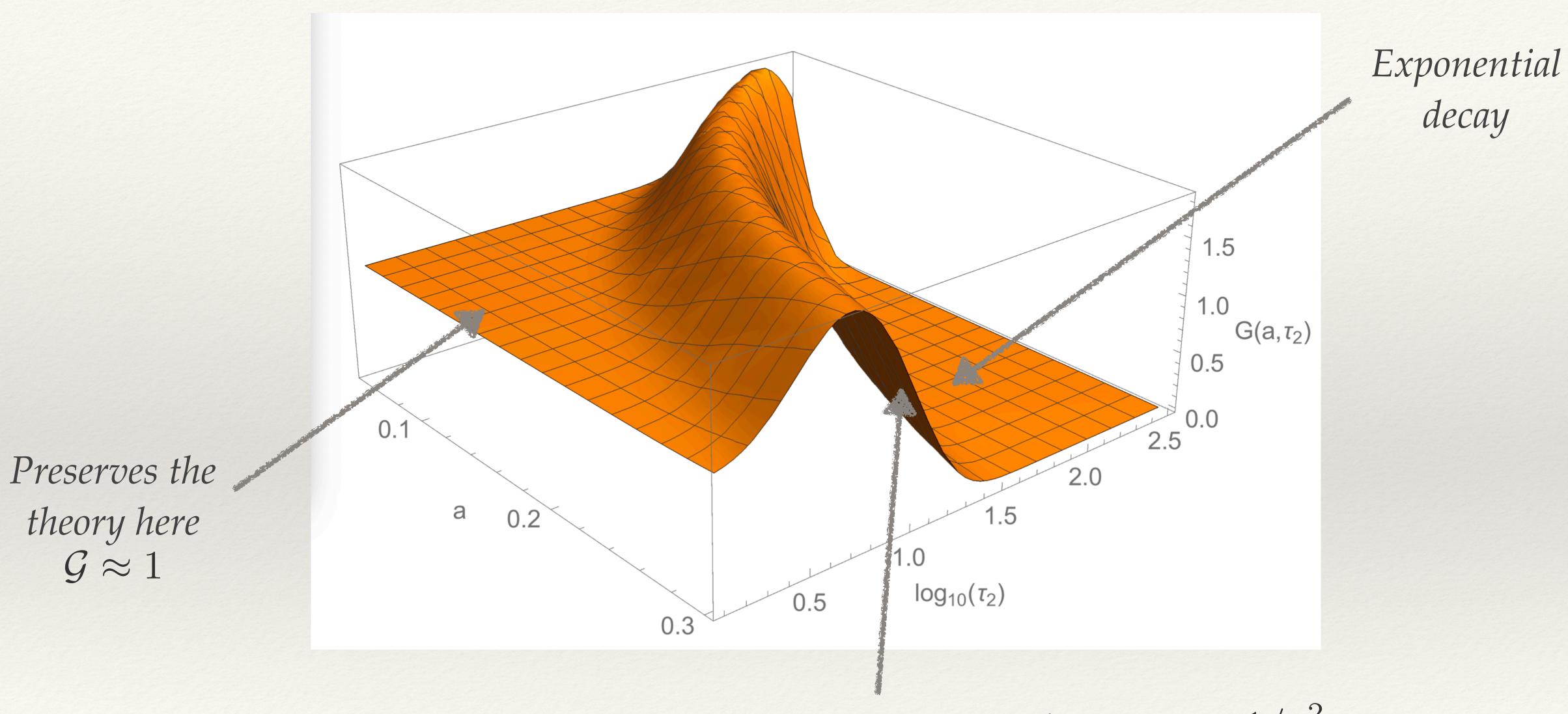
$$\mathcal{G}_{\rho}(a,\tau) \equiv \frac{1}{1+\rho a^2} \frac{\rho}{\rho-1} a^2 \frac{\partial}{\partial a} \left[Z_{\text{circ}}(\rho a,\tau) - Z_{\text{circ}}(a,\tau) \right]$$

where
$$Z_{\text{circ}} \equiv \sqrt{\tau_2} \sum_{m,n \in \mathbb{Z}} e^{-\pi \tau_2 (m^2 a^2 + n^2/a^2)} e^{2\pi i m n \tau_1}$$

- * Based upon Kiritsis and Kounnas regulator [E. Kiritsis, C. Kounnas, 1995] but **modified** in a critical way. Indeed:
 - * We can define $\mu^2 = \rho a^2/\alpha'$ as an **energy scale**;
 - * Modular invariance UV/IR mixing Scale duality symmetry $\mu/M_s \longrightarrow M_s/\mu$

[S. A. Abel, K. R. Dienes, 2021, ArXiv: 2106:04622]

A modular invariant regulator



It starts eating at $\tau_2 \approx 1/a^2$

The case of 6D $\mathcal{N}=1$ => 4D $\mathcal{N}=2$ toroidal compactifications

Famous result [L. Dixon, V. Kaplunovsky, J. Louis, 1990]

$$\Delta_a(T, U) = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \left(\tau_2 \hat{U}_{2,2}(\tau) - \tau_2 \right) = -\log \left(\frac{8\pi e^{1-\gamma}}{3\sqrt{3}} T_2 U_2 |\eta(T)|^4 |\eta(U)|^4 \right)$$

where:
$$\hat{U}_{2,2}(\tau) = \sum_{\vec{k},\vec{\ell} \in \mathbb{Z}^2} e^{-\pi \tau_2 \alpha' M^2} e^{2\pi i \tau (k_2 \ell_1 - k_1 \ell_2)}$$

$$* \alpha' M^2 = \frac{|k_1 + Uk_2 + T\ell_1 + TU\ell_2|^2}{U_2 T_2}; (k_1, k_2, \ell_1, \ell_2) \in \mathbb{Z}^4$$

* T and U are the so called moduli of the (space-time) torus.

The case of 6D $\mathcal{N}=1$ => 4D $\mathcal{N}=2$ toroidal compactifications

Famous result [L. Dixon, V. Kaplunovsky, J. Louis, 1990]

$$\Delta_a(T, U) = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \left(\tau_2 \hat{U}_{2,2}(\tau) - \tau_2 \right) = -\log \left(\frac{8\pi e^{1-\gamma}}{3\sqrt{3}} T_2 U_2 |\eta(T)|^4 |\eta(U)|^4 \right)$$

- Does not spoil the moduli dependence of the threshold;
- Worldsheet modular invariance is broken!

The case of 6D $\mathcal{N}=1$ => 4D $\mathcal{N}=2$ toroidal compactifications

Famous result [L. Dixon, V. Kaplunovsky, J. Louis, 1990]

$$\Delta_a(T, U) = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \left(\tau_2 \hat{U}_{2,2}(\tau) - \tau_2 \right) = -\log \left(\frac{8\pi e^{1-\gamma}}{3\sqrt{3}} T_2 U_2 |\eta(T)|^4 |\eta(U)|^4 \right)$$

$$\left. \frac{1}{g^2} \right|_{1-\text{loop}} = \int_{\mathcal{F}} \frac{d^2 \tau}{\tau_2^2} \tau_2 \hat{U}_{2,2}(\tau) \mathcal{G}_{\rho}(a,\tau) \right|$$
 Everything is regulated and modular invariant!

Our result

DKL result

$$\frac{1}{g(a,T,U)}\Big|_{\text{1-loop}} = -\frac{1}{1+2a^2} \left\{ \log(cT_2U_2|\eta(T)\eta(U)|^4) + 2\log(\sqrt{2}a) \right\}$$

Restore the unregulated theory when $a \rightarrow 0$

$$+4\sum_{\gamma,\gamma'\in\Gamma_{\infty}\backslash\Gamma}\left[2\tilde{\mathcal{K}}_{0}^{(0,1)}\left(\frac{2\pi}{a\sqrt{\gamma\cdot T_{2}\,\gamma'\cdot U_{2}}}\right)-\tilde{\mathcal{K}}_{1}^{(1,2)}\left(\frac{2\pi}{a\sqrt{\gamma\cdot T_{2}\,\gamma'\cdot U_{2}}}\right)\right]\right\}$$

$$\tilde{\mathcal{K}}_{\nu}^{(n,p)}(z,\rho) = \sum_{k,r=1}^{\infty} (krz)^n \Big(K_{\nu}(krz/\rho) - \rho^p K_{\nu}(krz) \Big)$$

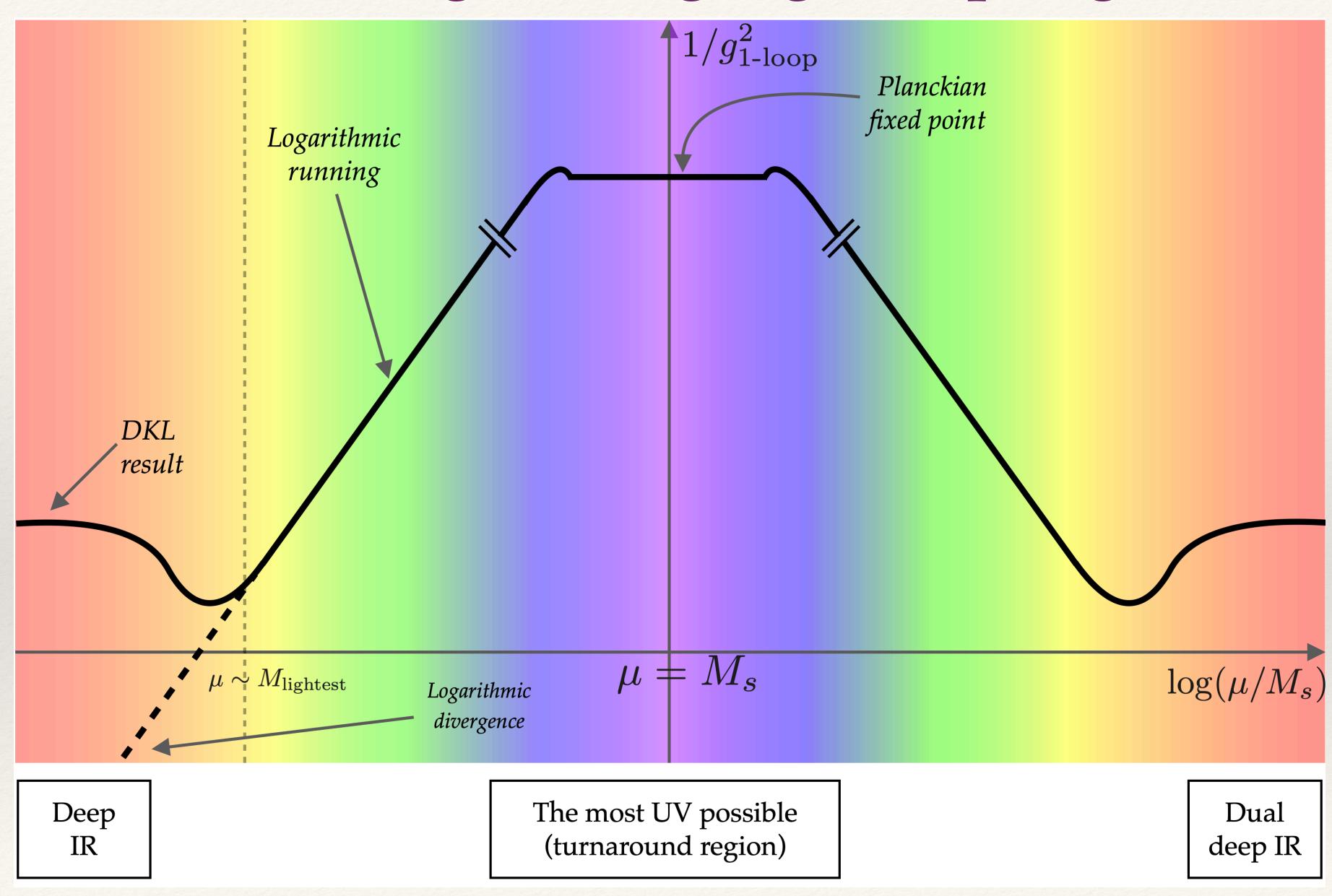
Correction which restore full worldsheet modular invariance

$$\bullet$$
 $\Gamma \equiv \mathrm{SL}(2,\mathbb{Z}), \ \Gamma_{\infty} \equiv \begin{pmatrix} 1 & n \\ 0 & 1 \end{pmatrix}, \qquad n \in \mathbb{Z}$

$$c \equiv 2\pi^2 e^{-2(\gamma+1)}$$

... contains all the required behaviour in limits...

Running of the gauge coupling



Conclusions and Outlook

- * We regulated the theory fully respecting modular invariance and UV/IR mixing properties;
- * We have seen how gauge couplings run in a particular class of compactifications;
- * This formalism can be applied in **full generality to any model**. Indeed, using the methods developed in arXiv:2106.04622 for calculating the Higgs mass in string theory, we worked out the **general case** (to appear soon, arXiv: 2208:nnnnn)

Thanks for your attention!